Note on the Factorization of a Square Matrix into Two Hermitian or Symmetric Matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Reduced Rank Nonnegative Matrix Factorization for Symmetric Nonnegative Matrices

Let V ∈ R be a nonnegative matrix. The nonnegative matrix factorization (NNMF) problem consists of finding nonnegative matrix factors W ∈ R and H ∈ R such that V ≈ WH. Lee and Seung proposed two algorithms which find nonnegative W and H such that ‖V −WH‖F is minimized. After examining the case in which r = 1 about which a complete characterization of the solution is possible, we consider the ca...

متن کامل

A Note on Decomposing a Square Matrix as Sum of Two Square Nilpotent Matrices over an Arbitrary Field

Let K be an arbitrary field and X a square matrix over K. Then X is sum of two square nilpotent matrices over K if and only if, for every algebraic extension L of K and arbitrary nonzero α ∈ L, there exist idempotent matrices P 1 and P 2 over L such that X = αP 1 - αP 2.

متن کامل

Note on Matrix Factorization

A large portion of Linear algebra (scientific computing) is devoted to accelerate computationally intensive operations through the deeper understanding on the structure of the matrix. While it is not extremely hard to obtain an analytical solutions for the problems of interest, often a large-size matrix or repetetive nature of the computations prohibit us from getting the actual solution in num...

متن کامل

On the WZ Factorization of the Real and Integer Matrices

The textit{QIF}  (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ}  factorization. The  WZ factorization can be faster than the textit{LU} factorization  because,  it performs the simultaneous evaluation of two columns or two rows. Here, we present a  method for computing the real and integer textit{WZ} and  textit{ZW} factoriz...

متن کامل

ON CONEIGENVALUES OF A COMPLEX SQUARE MATRIX

In this paper, we show that a matrix A in Mn(C) that has n coneigenvectors, where coneigenvaluesassociated with them are distinct, is condiagonalizable. And also show that if allconeigenvalues of conjugate-normal matrix A be real, then it is symmetric.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Review

سال: 1987

ISSN: 0036-1445,1095-7200

DOI: 10.1137/1029077